Kajian tranformasi dengan wavelet daubechies dan parameter thresholding-nya

Authors

  • Tika Sri Rahayu Universitas Sebelas Maret
  • Dewi Retno Sari Saputro Universitas Sebelas Maret

Keywords:

wavelet, Daubechies wavelet, wavelet transformation, threshoding parameters

Abstract

Along with the development of science and technology in the era of globalization continues to progress. In analyzing high fluctuating data, a method is needed to detect the signal, one of which is using the wavelet method. A wavelet is a transformation function that automatically cuts data into different parts and studies each component with a resolution appropriate to its scale. One type of wavelet is Daubechies wavelet. In analyzing wavelets there is noise that affects the accuracy of the data, so noise reduction process is needed using thresholding. The purpose of this research is to study the Daubechies wavelet transform and thresholding parameters. The result of this research is a study of the Daubechies wavelet method and the threshoding parameters, namely the minimax threshold and the universal threshold.

References

Burrus, C.S., R.A Gopinath, and H. Guo. (1998). Introduction to Wavelet and Wavelet Transform. NJ: Prentice Hall.

Daubechies I. (1992). Ten Lectures on wavelets, Society for Industrial and Applied Mathematics. PA: Philadelphia.

Donoho D. L. and Johnstone I. M. (1998). Minimax estimation via wavelet shrinkage. Annalys of statistics. 26(3), 879-921.

Friedman, Jerome., T. Hastie, and R. Tibshirani. (2008). The elements of statistical learning data mining, inference, and prediction. California: Springer.

Hapsari, D., Suparti, dan Tarno. (2009). Pemilihan Threshold Optimal pada Estimator Regresi Wavelet Thresholding dengan Metode Cross Validasi. Media Statistika, FMIPA UNDIP, 2(2), 59-69.

Lestari, V. N., Subanar. (2015). Transformasi wavelet diskret untuk data time series. Yogyakarta: Universitas Negeri Yogyakarta: In Seminar Nasional Matematika dan Pendidikan Matematika UNY.

Ogden, R. T. (1997). Essential Wavelets for Statistical Applications and Data Analysis. Boston: Birkhauser

Percival, D.B. dan Walden, A.T. (2000). Wavelet Methods for Time Series analysis,1st published. New York: Cambridge University Press.

Qhomariyah, N., B. Kusuma. P, dan F. Qodir. (2005). Penghalusan Derau Pada Penerimaan Sinyal Video Televisi Berwarna Menggunakan Metode Wavelet. Jurnal Ilmiah Semesta Teknika, 8(2), 126-136.

Ramadhan,M.D dan Setiyono,B. (2019). Pengolahan Citra untuk Mengetahui Tingkat Kesegaran Ikan Menggunakan Metode Transformasi Wavelet Diskrit. Jurnal Sains dan Seni ITS, 8(1), 2337-3520.

Soeparno, H dan G. Wikaria. (2010). Perancangan program aplikasi noise pada citra digital menggunakan metode berbasis wavelet. Jurnal MatStat, 10(1), 76-86.

Sutarno. (2010). Analisis Perbandingan Transformasi Wajah pada Pengenalan Citra Wajah. Jurnal Generic, 5(2), 15-21.

Verma, Nemaa. (2015). Performance Analysis of Wavelet Thresholding Methods in Denoising of Audio Signals of Some Indian Musical Instruments. International journal of engineering science and technology, 4(5), 2047-2052.

Wang, R., Can, H., Jianchun, X., Juelong, L., and Q. Yang. (2015). A New Wavelet Threshold Determination Method Considering Interscale Correlation in Signal Denoising. Journal of Hindawi.

Downloads

Published

2021-08-22

How to Cite

Rahayu, T. S., & Saputro, D. R. S. (2021). Kajian tranformasi dengan wavelet daubechies dan parameter thresholding-nya. Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika, 6, 294–299. Retrieved from http://conference.upgris.ac.id/index.php/senatik/article/view/1946

Issue

Section

Articles