PREDIKSI JUMLAH PRODUKSI GULA DENGAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM

Authors

  • Ahmad Kamsyakawuni Universitas Jember
  • Walidatush Sholihah Universitas Jember
  • Abduh Riski Universitas Jember

Keywords:

prediction system, sugar production, adaptive neuro-fuzzy inference system, membership function

Abstract

Sugar is a staple food consumed by Indonesians, making it essential to optimize sugar production to meet the population's needs. This research will design a prediction system for the amount of sugar production at PTPN XI PG Prajekan using the Adaptive Neuro-Fuzzy Inference System (ANFIS) method. ANFIS is an integrated approach that combines the fuzzy logic system with the artificial neural network system. This research involves several steps: data collection, designing the ANFIS system, training and testing the ANFIS model, calculating accuracy, and analyzing the results. The prediction system for the amount of sugar production is designed to predict the variable y_(t+1) which is the amount of sugar production in the year (t+1) using the input variables x_(1,t) (sugarcane harvested area in year t), x_(2,t) (amount of sugarcane in year t), x_(3,t) (average of yield in year t), and x_(4,t) (number of milling days in year t). The experiments in this study utilized variations in both the types and the quantities of membership functions. The best model obtained in this research is a model with a difference between two sigmoidal membership functions, and a product of two sigmoidal membership functions with a total of 2 membership functions for each input variable. Both models yield identical Mean Absolute Percentage Error (MAPE) values, with 1.79% during training and 4.82% during testing.

References

Aliza, C. N. (2019). Faktor-Faktor yang Mempengaruhi Produksi Gula di Indonesia, Universitas Muhammadiyah Surakarta.

Badan Pusat Statistik. (2019). Statistik Tebu Indonesia 2019. Jakarta: BPS RI.

Harahap S. A. dan Endah, S. N. (2019). Penerapan Adaptive Neuro-Fuzzy Inference System untuk Prediksi Nilai Tukar Rupiah, J. Masy.Inform, Vol. 10, No. 1, Hal 37-47.

Pramesti, S. A. F., Sadikin, U. A. S., Nurfitri, I. dan Maulida, F. (2023) Prediksi Indeks Harga Konsumen Kota Pontianak Menggunakan Metode Double Exponential Smoothing dan Analisis Trend," Equator J. Math. Stat. Sci., Vol. 2, No. 2, Hal 37-47.

Rindengan, A. J. dan Langi, Y. A. R. (2019). Sistem Fuzzy. Bandung: CV. Patra Media Grafindo.

Rochmawati, D. R. (2024). Prediksi Cuaca dengan Jaringan Syaraf Tiruan menggunakan Python, Vol. 2, No. 2.

Santoso,B., Azis, A. I. dan Zohrahayaty. (2020). Machine Learning & Penalaran Logika Fuzzy Algoritma, Manual, & Rapid Miner. Yogyakarta: Deepublish.

Setiawan, A., Yanto, B. dan Yasdomi, K. (2018) Logika Fuzzy dengan Matlab. Bali: Jayapangus Press.

Siregar, F. M., Nurcahyo, G. W. dan Defit, S. (2018). Prediksi Hasil Ujian Kompetensi Mahasiswa Program Profesi Dokter (UKMPPD) dengan Pendekatan ANFIS, J. RESTI (Rekayasa Sist. dan Teknol. Informasi), Vol. 2, No. 2, hal. 554-559.

Syafri, A dan Sudrajat, I. S. (2018). Faktor-Faktor Yang Mempengaruhi Produksi Gula Di PT. Madubaru (Madukismo) Yogyakarta, J. Ilm. Agritas, Vol. 2, No. 2, hal. 13-26.

Matsniya, A. (2022). Penerapan Metode Adaptive Neuro Fuzzy Inference System dalam Prediksi Produksi Tembakau di Kabupaten Jember, Universitas Jember.

Mulyanto, A. D. (2022). Paket mVIF: Sebuah Alat Bantu untuk Mendeteksi Multikolinearitas tanpa Variabel Dependen, MATICS J. Ilmu Komput. dan Teknol. Inf. (Journal Comput. Ilmu Komput. dan Teknol. Technol.), Vol. 14, No. 2, Hal 70-73.

Mutmainah. (2021). Prediksi Indeks Harga Konsumen di Kota Denpasar-Bali Menggunakan Metode Adaptive Neuro-Fuzzy Inference System (ANFIS), UIN Syarif Hidayatullah Jakarta.

Nugraha, Y. T., Zambak, M. F. dan A. Hasibuan. (2020). Perkiraan Konsumsi Energi Listrik Di Aceh Pada Tahun 2028 Menggunakan Metode Adaptive Neuro Fuzzy Inference System, CESS (Journal Comput. Eng. Syst. Sci.), Vol. 5, No. 1, Hal 104.

Tarno, A. Rusgiyono, dan Sugito, "Pendekatan Adaptive Neuro Fuzzy Inference System (ANFIS) untuk pemodelan data produksi padi di Jawa Tengah, J. Phys. Conf. Ser. Vol. 1217, No. 1, Hal 1-8.

Downloads

Published

2025-01-26

How to Cite

Kamsyakawuni, A., Sholihah, W., & Riski, A. (2025). PREDIKSI JUMLAH PRODUKSI GULA DENGAN METODE ADAPTIVE NEURO FUZZY INFERENCE SYSTEM. Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika, 8(1), 26–38. Retrieved from http://conference.upgris.ac.id/index.php/senatik/article/view/6766

Issue

Section

Articles