Pemodelan regresi spasial pada tingkat kemiskinan Provinsi Jawa Barat

Authors

  • Safa'at Yulianto Akademi Statistika (AIS) Muhammadiyah Semarang

Keywords:

poverty, spatial, Spatial Autoregressive Models (SAR)

Abstract

Poverty is a condition of economic inability to meet the average standard of living of the people in an area. This problem occurs in every country, especially developing countries. Some causes of poverty include uneven distribution of income which can lead to income inequality and low quality of human resources. Various efforts made by the Indonesian government to overcome the problem of poverty include maintaining a rice program for poor families (RASKIN), public health insurance (JAMKESMAS), Cash Direct Assistance (BLT), School Operational Assistance (BOS), National Community Empowerment Program (PNPM ) Mandiri in Urban and Rural Areas, People's Business Credit (KUR) and so on. The inaccuracy of targets in poverty alleviation caused the goal of alleviating poverty rates far from expectations, as evidenced by the high rate of poverty in West Java Province in 2015. Therefore, it is necessary to know the factors that influence poverty from 27 districts / cities in West Java Province. The independent variables in this study were the average length of school, per capita expenditure, economic growth, education and population. The analysis is used spatial regression with Spatial Autoregressive Models or SAR. The test results show that the average length of school, per capita expenditure, education and population significantly influence poverty, while economic growth has no significant effect. The average variable length of school, per capita expenditure, and population numbers have a negative direction of influence, while the education variable has a positive effect.

References

Amalia, R. (2017). Analisis Tingkat Kemahalan Konstruksi Kabupaten/Kota di Indonesia Tahun 2015. Jakarta: Sekolah Tinggi Ilmu Statistik.
Amelia, M. (2012). Penerapan Regresi Spasial untuk Data Kemiskinan Kabupaten di Pulau Jawa [Skripsi]. Bogor: Departemen Statistika, Fakultas Matematika dan Ilmu Pengetahuan Alam, Institut Pertanian Bogor.
Anselin, L. (1988). Spatial Econometrics: Methods and Models. London: Kluwer Academic Publisher.
Badan Pusat Statistik. (2015). Profil Kemiskinan di Indonesia Maret 2015. Berita Resmi Statistik, 1-7.
Bappenas. (2014). Memantapkan Perekonomian Nasional bagi Peningkatan Kesejahteraan Rakyat yang Berkeadilan. Jakarta: Kementerian Perencanaan Pembangunan Nasional/Badan Perencanaan Pembangunan Nasional.
Cressie, N. (1991). Statistics for Spasial Data. New York: Wiley.
Jundi, M. A. (2014). Analisis Faktor yang Mempengaruhi Tingkat Kemiskinan Provinsi-Provinsi di Indonesia. Semarang: Ilmu Ekonomi Studi Pembangunan, Fakultas Ekonomika dan Bisnis, Unversitas Diponegoro.
Kadji, Y. (2013). Kemiskinan dan Konsep Teoritisnya. 1-7.
Khonsa, F., Padmadisastra, S., Supartini, E., & Nahar, J. (2017). Estimasi Model Spatial Autoregressive With Autoregressive Disturbances dengan Menggunakan Prosedur Generalized Spatial Two Stage Least Square (GS2SLS). Seminar Statistika FMIPA UNPAD (pp. 290-299). Bandung: Universitas Padjadjaran.
Nurwati, N. (2008). Kemiskinan: Model Pengukuran, Permasalahan, dan Alternatif Kebijakan. Jurnal Kependudukan Padjadjaran, 1-11.
Prastyo, A. A. (2010). Analisis Faktor-faktor yang Mempengaruhi Tingkat Kemiskinan. Semarang: Fakultas Ekonomi, Universitas Diponegoro.
Putri, A. M. (2014). Faktor-Faktor yang Mempengaruhi Tingkat Kemiskinan di Provinsi Jawa Timur Tahun 2008-2012. Jurnal Ekonomi Pembangunan, 1-9.
Ruswanto, B., Nurjazuli, & Raharjo, M. (2012). Analisis Spasial Sebaran Kasus Tuberkulosis Paru Ditinjau Dari Faktor Lingkungan Dalam dan Luar Rumah di Kabupaten Pekalongan. Kesehatan Lingkungan Indonesia, 22-28.
Sari, D. M., Kusrini, D. E., & Suhartono. (2013). Pemodelan Kasus Tindak Pidana di Kota Surabaya dengan Pendekatan Regresi Spasial. JURNAL SAINS DAN SENI POMITS, 135-140.
Yulianto, S., Djuraidah, A., & Wigena, A. H. (2011). Model Otoregresif Simultan Bayes untuk Analisis Data Kemiskinan. Prosiding Seminar Nasional Statistika (pp. 406-413). Bandung: Universitas Padjadjaran.

Downloads

Published

2020-08-31

How to Cite

Yulianto, S. (2020). Pemodelan regresi spasial pada tingkat kemiskinan Provinsi Jawa Barat. Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika, 5, 185–193. Retrieved from https://conference.upgris.ac.id/index.php/senatik/article/view/911

Issue

Section

Articles