Klasterisasi provinsi di Indonesia berbasis perkembangan kasus Covid-19 menggunakan metode K-Medoids

Authors

  • Indra Gunawan Universitas Islam Indonesia
  • Galuh Anggraeni Universitas Islam Indonesia
  • Endang Sulistiyo Rini Universitas Islam Indonesia
  • Yunanda Mustofa Putri Universitas Islam Indonesia
  • Yuda Khoirul Zikri Universitas Islam Indonesia

Keywords:

k-medoids, covid-19

Abstract

COVID-19 is a disease caused by a new type of corona virus Sars-CoV-2 which is affecting almost all countries in the world. The country of Indonesia is one of the states of Southeast Asia which has a high spike in positive confirmed cases. With the growth in the number of positive confirmed patients, patients died, and patients recovered in Indonesia; then clustering is done using K-Medoids to see the development of the COVID-19 case in Indonesia. K-Medoids is a classic partitioning technique from clustering that classifies object n datasets into k clusters. By clustering using the K-Medoids method; then obtained provinces that have confirmed positive corona in Indonesia are divided into 3 groups. Members from group 1 which are in the high category are 2 provinces; members from group 2 in the medium category are 6 provinces; while for members of group 3 with a low category of 26 provinces.

References

Abhishek, P. & Purnima, S. (2013). New Approach for K-means and K-Medoids Algoritm. International journal of Computer Application Technology and Research. Vol. 2. India.
Bhat, A. (2014). K-Medoids Clustering Using Partitioning Around Medoids for Performing Face Recognition. International Joural of Soft Computing, Mathematics and Control (IJSCMC), Vol. 3, No.3.
BNPB. (2020, Juni 30). Indonesia COVID-19 Hub Site. Retrieved from Gugus Tugas Percepatan Penanganan COVID-19 Republik Indonesia: https://bnpb-inacovid19.hub.arcgis.com/
Kaur, Noor K., Kaur, Usvir., & Singh, Dr.Dheerendra. (2014). K-Medoids Clustering Algorithm – A Review. [pdf] International Journal of Computer Application and Technology (IJCAT). ISSN. 2349-1841 Vol. 1, Issue 1. April 2014.
Maududie, & Wibowo. (2014). Metode Adaptive-Sectting Divisive Clustering dengan Pendekatan Graf Hutan Yang Minimum. Konferensi Nasional Ilmu Komputer (KONIK) 2014 ISSN : 23 38-3899. Jember.
Tallahasse, F. (2020, Juli 28). Introduction to Data Mining Clustering Peixiang Zhao. Retrieved from slideplayer.com/slide/10431363/
Wira, B., Endy Budianto, A., & Sartika Wiguna, A. (2019). IMPLEMENTASI METODE K-MEDOIDS CLUSTERING UNTUK MENGETAHUI POLA PEMILIHAN PROGRAM STUDI MAHASIWA BARU TAHUN 2018 DI UNIVERSITAS KANJURUHAN MALANG. Jurnal Terapan Sains & Teknologi.

Downloads

Published

2020-08-31

How to Cite

Gunawan, I., Anggraeni, G., Rini, E. S., Putri, Y. M., & Zikri, Y. K. (2020). Klasterisasi provinsi di Indonesia berbasis perkembangan kasus Covid-19 menggunakan metode K-Medoids. Prosiding Seminar Nasional Matematika Dan Pendidikan Matematika, 5, 301–306. Retrieved from https://conference.upgris.ac.id/index.php/senatik/article/view/964

Issue

Section

Articles